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Abstract

In this paper, we design a variable structure observer-based control system that guarantees
asymptotic convergence of the plant’s trajectory to the equilibrium point despite matched and
unmatched uncertainties in the plant dynamics. Our control laws are functions of the estimated
plant state and the proposed framework allows employing any estimator or observer, such as the
Walcott and Żak observer, as long as the estimated state converges asymptotically to the plant
state. Barrier Lyapunov functions guarantee that the closed-loop system’s trajectory verifies the
state constraints. This study is the first of its kind, since recently variable structure control
architectures have been adapted to account for constraints on the state space or allow output-
feedback, but observer-based variable structure control in the presence of state constraints has
not been attempted before. A numerical simulation involving the roll dynamics of an unstable
aircraft, whose aerodynamic coefficients are unknown, illustrates our theoretical framework.
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1I. Introduction

In most cases of practical interest, it is difficult to accurately model dynamical systems and
estimate the parameters characterizing such models. Additional complexity in the problem of
controlling nonlinear systems is given by the fact that it may not be possible to directly measure
all the components of the system’s state. Lastly, it is often needed to guarantee that the system’s
trajectory is confined to a constraint set at all times. In this paper, we present a novel nonlinear
observer-based control architecture, which guarantees that the system’s trajectory converges
asymptotically to an equilibrium point and is constrained to a simply connected open set.

Notorious robust control techniques for nonlinear dynamical systems are adaptive control [1],
[2] and sliding mode control [3], [4], [5, Ch. 7], [6, Ch. 14], [7]. The sliding mode control
architecture, which was first devised in 1960s by Emel’yanov and Barbashin [4], consists in
steering in finite-time the system’s trajectory to a sliding manifold, which is designed so that if
the system’s trajectory reaches this manifold, then the system state asymptotically converges to
zero. The control law that drives the system trajectory to the sliding manifold involves the signum
function, and hence is discontinuous. It is well known that solutions of ordinary differential
equations with discontinuous right-hand sides may not exist or may not be unique [8, Ch. 2], [9].
Furthermore, in most cases of practical interest discontinuous control inputs induce an undesired
effect known as chattering, which consists in high-frequency oscillations of the system’s state
about the sliding manifold [6, Ch. 14], [10]. In spite of the theoretical and practical challenges
concerning sliding mode control, this technique has drawn considerable interest in aerospace
[11], chemical [12], electrical [13], marine [14], and mechanical engineering [15] for its ease
of implementation [16] and ability to compensate for disturbances and uncertainties [17]; for
further details, see [18], [19] and the numerous references therein.

The problem of designing sliding mode control laws, which account for constraints in the
state space, received relatively less attention [20] and has been addressed for first-order sliding
mode [21], second-order sliding mode [22], third-order sliding mode with box constraints [23],
and within the context of model predictive control [24]. The classical sliding mode architecture
has also been modified to allow observer-based and output-feedback control [25]–[28]. It is
worthwhile to recall also both [29], where an output-feedback sliding mode control architecture
is proposed for uncertain stochastic systems, and [30], where sensor faults are accounted for.
However, to the authors’ best knowledge, an observer-based sliding mode control architecture
in the presence of state constraints has not been proposed before. Alternative approaches to the
problem of designing control laws that guarantee some bounds on the tracking error involve
the adaptive control framework [31], where single-input-single-output dynamical systems are
considered, and the backstepping framework [32], where triangular systems are considered.

In this paper, we design robust, observer-based feedback control laws for nonlinear time-
varying dynamical systems affected by matched and unmatched uncertainties and subject to
state constraints on the closed-loop system’s trajectory. A unique feature of this work is that the
feedback control laws presented are functions of the estimated plant state, which is reconstructed
by a dynamic observer using the information provided by the measured output. To meet our
design goal, firstly we prove sufficient conditions for the closed-loop systems trajectory to
converge to the sliding manifold in finite-time and asymptotically to the equilibrium point
along the sliding manifold in the presence of constraints on the plant state. Successively, the
effectiveness of our observer-based feedback controls is shown by proving that if a state-
feedback control guarantees convergence of the plant trajectory and the estimated state verifies
the constraints on the plant state and asymptotically converges to the actual plant state, then
the feedback control law obtained by accounting for the estimated state guarantees convergence
of the closed-loop system to the equilibrium point. Barrier Lyapunov functions [33], [34] are
employed to certify that the constraints on the plant state are verified and it is worthwhile



2
to recall the recent publications [35], where time-varying barrier Lyapunov functions are used
within the context of backstepping control, and [36], [37], where barrier Lyapunov functions are
used within the context of adaptive control.

Although the framework provided in this paper does not depend on a specific plant observer,
we show how a popular nonlinear robust observer, that is, the Walcott and Żak observer [38]–
[44], can be used within our observer-based feedback control framework. Alternative observers
that can be employed within our framework are presented, for instance, in [45]–[49].

This paper is organized in two parts. Firstly, we prove sufficient conditions for strong uniform
finite-time stability and uniform asymptotic stability of time-varying dynamical systems in the
presence of state constraints. Successively, we prove sufficient conditions for asymptotic and
finite-time convergence of dynamical systems, whose feedback controls account for the system’s
estimated state. A numerical example illustrates the applicability of our robust nonlinear observer-
based feedback control architecture. Specifically, we consider the problem of stabilizing the roll
dynamics of a delta-wing aircraft, whose aerodynamic coefficients are unknown. The proofs of
our main results are provided in the Appendix.

II. Notation, Definitions, and Mathematical Preliminaries

In this section, we establish notation, definitions, and review some preliminary results. Let
R+ denote the set of positive real numbers, R+ denote the set of nonnegative real numbers, Rn

denote the set of n × 1 real column vectors, Rn×m denote the set of n ×m real matrices, and
Bε(x) denote the open ball centered at x with radius ε. We write ‖ · ‖ both for the Euclidean
vector norm and the corresponding equi-induced matrix norm, ‖ · ‖∞ both for the infinity vector
norm and the corresponding equi-induced matrix norm, In or I for the n× n identity matrix,
0n×m or 0 for the zero n×m matrix, and AT for the transpose of the matrix A.

Consider the nonlinear dynamical system given by

ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ It0,x0 , (1)

where, for every t ∈ It0,x0 , x(t) ∈ D ⊆ Rn, It0,x0 ⊆ [t0,∞) is the maximal interval of existence
of a solution x(t) of (1), D is an open set with 0 ∈ D, and f : It0,x0 × D → Rn is such that,
for every (t, x) ∈ It0,x0 × D, f(t, 0) = 0 and f(·, ·) is continuous in t and x. A continuously
differentiable function x : It0,x0 → D is said to be the solution of (1) on the interval It0,x0 ⊂ R if
x(·) satisfies (1) for all t ∈ It0,x0 . As shown in [50], it follows from Peano’s theorem [8, Th. 2.24]
that the joint continuity of f(·, ·) implies that, for every x ∈ D, there exists τ0 < t0 < τ1 and a
solution x(·) of (1) defined on the open interval (τ0, τ1) such that x(t0) = x. A solution t 7→ x(t)
is said to be right maximally defined if x cannot be extended (either uniquely or nonuniquely)
forward in time. We assume that all right maximal solutions to (1) exist on [t0,∞), and hence,
we assume that (1) is forward complete.

We assume that (1) possesses unique solutions in forward time for all initial conditions except
possibly the origin in the following sense. For every x ∈ D\{0} there exists τx > t0 such that,
if y1 : [t0, τ1)→ D and y2 : [t0, τ2)→ D are two solutions of (1) with y1(t0) = y2(t0) = x, then
τx ≤ min{τ1, τ2} and y1(t) = y2(t) for all t ∈ [t0, τx). Without loss of generality, we assume
that for each x, τx is chosen to be the largest such number in [t0,∞). In this case, we denote by
the continuously differentiable map st0,x0(·) , s(·, t0, x0) the trajectory or the unique solution
curve of (1) on It0,x0 satisfying s(0, t0, x0) = x0. Sufficient conditions for forward uniqueness
in the absence of Lipschitz continuity can be found in [51] [9, Sec. 10], [52], and [53, Sec. 1].

The following definition introduces the notion of finite-time stability for time-varying nonlinear
dynamical systems, which plays a key role in this paper. This statement is a generalization of
the definition of finite-time stability for nonautonomous systems provided in [50], as the notion
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of Lyapunov stability is provided in terms of open sets, and not open balls; the importance of
defining finite-time stability in terms of open sets will become clear while analyzing the stability
properties of constrained dynamical systems. For the statement of this definition, recall that if
st0,x0(t) → 0 as t → T , where st0,x0(·) denotes the solution of (1), then for every ε̂ > 0, there
exists T̂ (ε̂, t0, x0) ∈ (t0, T ), such that if t ∈ (T̂ (ε̂, t0, x0), T ), then ‖st0,x0(t)‖ < ε̂. Alternatively,
if st0,x0(t) → 0 as t → T uniformly in t0, then for every ε̂ > 0, there exists T̂ (ε̂, x0) ∈ (t0, T ),
such that if t ∈ (T̂ (ε̂, x0), T ), then ‖st0,x0(t)‖ < ε̂.

Definition 2.1. The nonlinear dynamical system (1) is finite-time stable if there exist an open
neighborhood D0 ⊆ D of the origin and a function T : [0,∞)×D0\{0} → (t0,∞), called the
settling-time function, such that the following statements hold:
i) Finite-time convergence. For every (t0, x0) ∈ [0,∞) × D0 \{0}, st0,x0(t) is defined on

[t0, T (t0, x0)), st0,x0(t) ∈ D0\{0} for all t ∈ [t0, T (t0, x0)), and st0,x0(t) → 0 as t →
T (t0, x0).

ii) Lyapunov stability. For every t0 ∈ [0,∞) and every open set Nε ⊆ D0 containing x = 0,
there exists an open set Nδ ⊆ D0 containing x = 0, such that for every x0 ∈ Nδ\{0},
st0,x0(t) ∈ Nε for all t ∈ [t0, T (t0, x0)).

The nonlinear dynamical system (1) is uniformly finite-time stable if (1) is finite-time stable and
the following statement holds:
iii) Uniform Lyapunov stability. For every open set Nε ⊆ D0 containing x = 0, there exists an

open set Nδ ⊆ D0 containing x = 0, such that for every x0 ∈ Nδ\{0}, st0,x0(t) ∈ Nε for
all t ∈ [t0, T (t0, x0)) and for all t0 ∈ [0,∞).

The nonlinear dynamical system (1) is strongly uniformly finite-time stable if (1) is uniformly
finite-time stable and the following statement holds:
iv) Uniform finite-time convergence. For every (t0, x0) ∈ [0,∞)×D0\{0}, st0,x0(t) is defined

on [t0, T (t0, x0)), st0,x0(t) ∈ D0\{0} for all t ∈ [t0, T (t0, x0)), and st0,x0(t) → 0 as t →
T (t0, x0) uniformly in t0 for all t0 ∈ [0,∞).

The nonlinear dynamical system (1) is globally finite-time stable (respectively, globally uniformly
finite-time stable or globally strongly uniformly finite-time stable) if it is finite-time stable
(respectively, uniformly finite-time stable or strongly uniformly finite-time stable) with D0 = Rn.

The following result proves that if (1) is finite-time stable, then its solution exists, is unique,
and is defined for all t ∈ [t0,∞).

Proposition 2.1 [50], [54]. Consider the nonlinear dynamical system G given by (1). Assume
G is finite-time stable and let D0 ⊆ D and T : [0,∞) × D0\{0} → (t0,∞) be defined as in
Definition 2.1. Then, for every (t0, x0) ∈ [0,∞)×D0, there exists a unique solution s(t, t0, x0),
t ≥ t0, to (1) such that s(t, t0, x0) ∈ D0, t ∈ [t0, T (t0, x0)), and such that s(t, t0, x0) = 0,
t ≥ T (t0, x0), where T (t0, 0) , t0.

It follows from Proposition 2.1 that if the zero solution x(t) ≡ 0 to (1) is finite-time stable, then
the solutions of (1) define a continuous global semiflow on D0; that is, s : [t0,∞)×[0,∞)×D0 →
D0 is jointly continuous and satisfies the consistency property s(t0, t0, x) = x and the semigroup
property s(t, τ, s(τ, t0, x)) = s(t, t0, x) for every x ∈ D0 and t ≥ τ ≥ t0. In addition, it follows
from Proposition 2.1 that we can extend T (t0, ·) to all of D0 by defining T (t0, 0) , t0, for all
t0 ∈ [0,∞). Now, by uniqueness of solutions it follows that s(T (t0, x)+ t, t0, x) = 0, t ∈ [0,∞),
and hence, it is easy to see from Definition 2.1 that

T (t0, x) = inf{t ∈ [t0,∞) : s(t, t0, x) = 0}, (t0, x) ∈ [0,∞)×D0. (2)

Lastly, it follows from Definition 2.1 and Proposition 2.1 that if the zero solution x(t) ≡ 0 to (1)
is finite-time stable, then it is asymptotically stable, and hence, finite-time stability is a stronger
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condition than asymptotic stability.

In this paper, we consider controlled, nonlinear, time-varying dynamical systems of the form

ẋ(t) = F (t, x(t), u(t)), x(t0) = x0, t ≥ t0, (3)
y(t) = H(x(t), u(t)), (4)

where x(t) ∈ D, t ≥ t0, denotes the plant state, u(t) ∈ U ⊆ Rm denotes the control input,
y(t) ∈ Rl denotes the measured output, 0 ∈ U , F : [t0,∞) × D × U → Rn is such that
F (t, 0, 0) = 0, t ≥ t0, F (·, x, u) is continuous in t, for all (x, u) ∈ D×U , and F (t, ·, ·) is jointly
continuous in x and u uniformly in t, for all t ∈ [t0,∞), and H : D × U → Rl is continuous
on D × U and such that H(0, 0) = 0. A piecewise continuous function φ : D → U such that
‖φ(·)‖ is continuous and φ(0) = 0 is called a control law, and if u(t) = φ(x(t)), t ≥ t0, where
φ(·) is a control law and x(·) denotes the unique solution of the closed-loop system

ẋ(t) = F (t, x(t), φ(x(t))), x(t0) = x0, t ≥ t0, (5)

then u(·) is a state-feedback control law.
To address the problem of designing feedback control laws that do not rely on the prefect

knowledge of the state vector, we consider dynamical systems in the form

ẋ(t) = F (t, x(t), φ(x(t) + e(t))), x(t0) = x0, t ≥ t0, (6)

where φ(·) is a control law and e : [t0,∞) → Rn is continuous and such that e(t) → 0 as
t → ∞. The vector function e(·) denotes the estimation error, that is, the difference between
the solution x(·) of (6) and the state of a nonlinear observer, which is designed to estimate x(·),
based on the measured output y(·). If u(t) = φ(x(t) + e(t)), t ≥ t0, where φ(·) is a control law,
e(t)→ 0 as t→∞ uniformly in t0, and x(·) denotes the unique solution of (6), then u(·) is an
observer-based feedback control law.

III. Sufficient Conditions for Finite-Time and Uniform Asymptotic Stability
in the Presence of State Constraints

In this section, we provide sufficient conditions for strong uniform finite-time stability and
uniform asymptotic stability [8, Def. 4.2] of the time-varying nonlinear dynamical system (1),
which guarantee that the solution x(t), t ≥ t0, of (1) is contained in the simply connected
constraint set

C , {x ∈ D : h(x) ≥ 0} , (7)

where h : D → R is continuously differentiable and h(0) > 0. For the statement of these results,
we denote the interior of C by C̊, that is, C̊ , {x ∈ D : h(x) > 0}; in this paper, we assume
that the constraint set is a proper subset of the plant state space, that is, C̊ ⊂ Rn.

Theorem 3.1. Consider the nonlinear dynamical system (1) with x0 ∈ C̊. If there exist a
continuously differentiable function V : [t0,∞)× C̊ → R, class K functions α(·) and β(·), and
real numbers θ ∈ (0, 1) and k > 0, such that

α(‖x‖) ≤ V (t, x)

h(x)
≤ β(‖x‖), (t, x) ∈ [t0,∞)× C̊, (8)

1

h(x)

∂V (t, x)

∂t
+

[
1

h(x)

∂V (t, x)

∂x
− V (t, x)

h2(x)

∂h(x)

∂x

]
f(t, x) ≤ −k

(
V (t, x)

h(x)

)θ
, (9)
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then (1) is strongly uniformly finite-time stable, and x(t) ∈ C̊ for all t ≥ t0. Moreover, there exist
a neighborhood D0 ⊆ C̊ of the origin and a settling-time function T : [0,∞) × D0 → [t0,∞),
such that

T (t0, x0) ≤
1

k(1− θ)

[
V (t0, x0)

h(x0)

]1−θ
, (t0, x0) ∈ [0,∞)×D0, (10)

and T (·, ·) is jointly continuous on [0,∞)×D0.

It follows from the proof of Theorem 3.1, which is reported in the Appendix, that if the

continuously differentiable function
V (t, x)

h(x)
satisfies (8) and (9), then it is a barrier Lyapunov

function, that is,
V (t, x)

h(x)
is positive-definite,

V (t, x(t))

h(x(t))
is finite for every t ≥ t0 along the

trajectory of (1), and
V (t, x)

h(x)
→ ∞ as dist(x, ∂C) → 0, where ∂C , {x ∈ D : h(x) = 0}

denotes the boundary of C and dist(·, ·) denotes the distance function between subsets of Rn [55,
p. 16]; the notion of barrier Lyapunov function is usually defined for time-invariant dynamical
systems [33], [34], whereas the dynamical system (1) is time-varying.

A weaker form of Theorem 3.1 could have been proven as a direct consequence of Theorem
3.2 of [50]. Specifically, if (8) and (9) are satisfied, then it follows from Theorem 3.2 of [50] that
for every ε > 0 and t0 ∈ [0,∞) there exists δ = δ(ε) > 0 such that Bδ(0) ⊆ C̊, and if x0 ∈ Bδ(0),
then x(·) converges to the equilibrium point x = 0 in finite-time and x(t) ∈ Bε(0) ⊆ C̊, t ≥ t0.
This is a considerably weaker result, since strong uniform finite-time stability of (1) is guaranteed
only if the initial condition x0 lays in an open ball, which is entirely contained in C̊. Theorem
3.1, instead, proves that if (8) and (9) are satisfied, then for every ε > 0 and t0 ∈ [0,∞) there
exists δ = δ(ε) > 0 such that if x0 ∈ Bδ(0)∩ C̊, then x(·) converges to x = 0 in finite-time, and
x(t) ∈ Bε(0) ∩ C̊, t ≥ t0.

It is worth to remind that convex sets are diffeomorphic to Rn [56, p. 60]. Therefore, if C̊
is convex, then there exists a continuously differentiable function T : C̊ → Rn, whose inverse
exists and is continuously differentiable, and one can apply the results on global strong uniform
stability of time-varying dynamical systems [50] to prove sufficient conditions for the solutions
of (1) to be finite-time stable and contained in C̊ for any initial condition. However, there does
not exist any systematic approach to devise such T (·).

The next result provides sufficient conditions for the time-varying dynamical system (1) to be
uniformly asymptotically stable and such that x(t) ∈ C̊, for all t ≥ t0. The proof of this theorem
is virtually identically to the proof of Theorem 3.1, and therefore is omitted for brevity.

Theorem 3.2. Consider the nonlinear time-varying dynamical system (1) with x0 ∈ C̊. If
there exist a continuously differentiable function V : [t0,∞) × C̊ → R and class K functions
α(·), β(·), and λ(·) such that

α(‖x‖) ≤ V (t, x)

h(x)
≤ β(‖x‖), (t, x) ∈ [t0,∞)× C̊, (11)

1

h(x)

∂V (t, x)

∂t
+

[
1

h(x)

∂V (t, x)

∂x
− V (t, x)

h2(x)

∂h(x)

∂x

]
f(t, x) ≤ −λ(‖x‖), (12)

then (1) is uniformly asymptotically stable, and x(t) ∈ C̊ for all t ≥ t0.

It is worth to recall that the authors in [33] and [57] provide systematic approaches to find
a barrier Lyapunov function and a feedback control law, such that a closed-loop system is
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asymptotically stable and the system’s trajectory is contained in some constraint set. These
results are achieved in [33] by mean of an iterative algorithm and in [57] by extending Artstein
necessary and sufficient conditions for the existence of control Lyapunov functions [58].

IV. Observer-Based Feedback Control and Trajectory Convergence

In this section, we provide sufficient conditions for the solution of the nonlinear dynamical
system (6) to converge to the equilibrium point either asymptotically or in finite-time. Specifically,
the next result proves that if e : [t0,∞)→ Rn is such that limt→∞ e(t) = 0 and the state-feedback
control law u(t) = φ(x(t)), t ≥ t0, guarantees strong uniform finite-time stability of (5), then the
observer-based feedback control law u(t) = φ(x(t) + e(t)) guarantees finite-time convergence
of the solution of (6) to x = 0.

Theorem 4.1. Consider the nonlinear dynamical system (6), assume that e(·) is continuous
on [t0,∞) and e(t) → 0 as t → ∞ uniformly in t0, and suppose there exist a continuously
differentiable function V : [t0,∞)×D → R, class K function α(·) and β(·), and real numbers
θ ∈ (0, 1) and k > 1, such that

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖), x ∈ D, (13)
∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(x)) ≤ −k (V (t, x))θ . (14)

Then, there exists a compact set M ⊂ D, such that 0 ∈ M and if x0 ∈ M, then x(t) → 0 as
t→ t1 uniformly in t0, for some finite-time t1 ≥ t0.

The proof of Theorem 4.1 is reported in the Appendix. In this paper, we address the problem of
designing nonlinear robust observers and observer-based feedback control laws, which guarantee
uniform finite-time convergence to the origin of nonlinear dynamical systems. It follows from
Theorem 3.2 of [50] that if (13) and (14) are satisfied, then the closed-loop system (5) is strongly
uniformly finite-time stable. Hence, Theorem 4.1 proves that if the state-feedback control law
u = φ(x) guarantees strong uniform finite-time stability of the closed-loop system and the
estimation error e(·) is such that limt→∞ e(t) = 0, then the observer-based feedback control
law u = φ(x + e) guarantees uniform finite-time convergence of the system trajectory to the
equilibrium point. Remarkably, it follows from the proof of Theorem 4.1 that larger values of k
and smaller values of θ allow for larger sets M.

The next result proves that if limt→∞ e(t) = 0 and the state-feedback control law u(t) =
φ(x(t)) guarantees uniform asymptotic stability of (5), then the observer-based feedback control
law u(t) = φ(x(t) + e(t)) guarantees uniform asymptotic convergence of the solution of (6) to
x = 0. The proof of this theorem is omitted, since it is substantially identical to the proof of
Theorem 4.1.

Theorem 4.2. Consider the nonlinear dynamical system (6), assume that e(t)→ 0 as t→∞
uniformly in t0, and suppose there exist a continuously differentiable function V : [t0,∞)×D →
R and class K functions α(·), β(·), λ(·) such that (13) is satisfied and

∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(x)) ≤ −λ(‖x‖), (t, x) ∈ [t0,∞)×D. (15)

Then, there exists a compact set M ⊂ D, such that 0 ∈ M and if x0 ∈ M, then x(t) → 0 as
t→∞ uniformly in t0.

It is worth to remark that neither Theorem 4.1 nor Theorem 4.2 infer Lyapunov stability of
the equilibrium point x = 0. These results merely state finite-time or asymptotic convergence of
the closed-loop system’s trajectory to the equilibrium point.
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Systems

In this section, we apply the results of Sections III and IV to design a robust observer-based
feedback control law, which guarantees that the closed-loop trajectory is constrained to a simply
connected set and asymptotically converges to the equilibrium point. This result is inspired by
the sliding mode control architecture, as our controller steers the system trajectory to a sliding
manifold in finite-time. However, in spite of the terminal sliding mode framework, our control
architecture is observer-based and guarantees that the closed-loop system trajectory is constrained
to a simply connected set.

We consider time-varying nonlinear dynamical systems of the form

ẋ(t) = f(x(t)) +B(x(t)) [G(x(t))E(x(t))u(t) + δ1(t, x(t), u(t))] + δ2(x(t)),

x(t0) = x0, t ≥ t0, (16)

where x(t) ∈ D ⊆ Rn, t ≥ t0, u(t) ∈ U ⊆ Rm, f : D → Rn, B : D → Rn×m, G : D → Rm×m,
and E : D → Rm×m are continuous in x, f(0) = 0, E(x) is invertible for all x ∈ D, G(·)
is an unknown positive-definite diagonal matrix, that is, G(x) ≥ g0Im for some g0 > 0, δ1 :
[t0,∞)×D × U → Rm is such that δ1(t, 0, 0) = 0, t ≥ t0, δ1(·, x, u) is continuous in t, for all
(x, u) ∈ D×U , and δ1(t, ·, ·) is jointly continuous in x and u uniformly in t, for all t ∈ [t0,∞),
and δ2 : D → Rn is continuous in x and such that δ2(0) = 0. The terms δ1(·, ·, ·) and δ2(·)
are unknown and capture the matched and unmatched uncertainties, respectively. Assuming that
the elements of G(·) are unknown allows accounting for failures in the control mechanism. The
dynamical system (16) is in the same form as the dynamical model used in classic sliding mode
design; for details, see [6, pp. 569-570].

For the statement of the following assumption, it is worth to recall that if T : D → Rn is
continuously differentiable, invertible, and T −1(·) is continuously differentiable, then T (·) is a
diffeomorphism [6, p. 508].

Assumption 5.1. Consider the nonlinear dynamical system (16) and the constraint set (7).
There exists a diffeomorphism T : C̊ → Rn, such that T (0) = 0 and

∂T (x)

∂x
B(x) =

[
0(n−m)×m

Im

]
, x ∈ C̊. (17)

Let T (·) be a diffeomorphism, such that Assumption 5.1 is satisfied and T (x) = [ηT, ξT]T,
where x ∈ C̊, η ∈ Rn−m, and ξ ∈ Rm. Then (16) is equivalent to

η̇(t) = fη(η(t), ξ(t)) + δη(η(t), ξ(t)), η(t0) = [In−m, 0(n−m)×m]T (x0), t ≥ t0, (18)

ξ̇(t) = fξ(η(t), ξ(t)) +G(η(t), ξ(t))E(η(t), ξ(t))u(t) + δξ(t, η(t), ξ(t), u(t)),

ξ(t0) = [0m×(n−m), Im]T (x0). (19)

Assumption 5.1, which is fundamental to design also classical sliding mode controls [6, p. 564],
postulates the separation of the matched uncertainties from the unmatched uncertainties. This
assumption is usually verified by mechanical systems, where fη(·, ·) captures the undisturbed
kinematic equations and fξ(·, ·) captures the undisturbed, uncontrolled dynamic equations.

Define the simply connected sets

Cη , {η ∈ Rn−m : hη(η) ≥ 0}, (20)

Cξ , {ξ ∈ Rm : hξ(ξ) ≥ 0}, (21)
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where hη : Rn−m → R and hξ : Rm → R are continuously differentiable, hη(0) > 0, hξ(0) > 0,
and C̊η×C̊ξ ⊆ T (C̊); note that if (η, ξ) ∈ C̊η×C̊ξ, then T −1(η, ξ) ∈ C̊, since T (·) is continuous and
surjective. The next lemma provides sufficient conditions for the existence of a state-feedback
control law φ : Rn−m → Rm, such that φ(C̊η) ⊆ C̊ξ and the closed-loop system

η̇(t) = fη(η(t), φ(η(t))) + δη(η(t), φ(η(t))), η(t0) = [In−m, 0(n−m)×m]T (x0), t ≥ t0, (22)

is asymptotically stable and η(t) ∈ C̊η, t ≥ t0. The existence of the state-feedback control law
φ(·) is fundamental to define a sliding manifold; for details, see [6, p. 564].

Lemma 5.1. Consider the nonlinear time-invariant dynamical system (18) with η(t0) ∈ C̊η. If
there exist a continuously differentiable function V : C̊η → R, class K functions α(·), β(·), and
λ(·), and a state-feedback control law φ : Rn−m → C̊ξ, such that φ(C̊η) ⊆ C̊ξ and

α(‖η‖) ≤ V (η)

hη(η)
≤ β(‖η‖), η ∈ C̊η, (23)[

1

hη(η)

∂V (η)

∂η
− V (η)

h2η(η)

∂hη(η)

∂η

]
[fη(η, φ(η)) + δη(η, φ(η))] < −λ(‖η‖), (24)

then the closed-loop system (22) is asymptotically stable, and η(t) ∈ C̊η for all t ≥ t0.

Proof: The result is a direct consequence of Theorem 3.2 applied to the nonlinear time-invariant
dynamical system (18). �

The next theorem, which is the main result of this section, provides a robust observer-based
feedback control law, such that x(t), t ≥ t0, lays in the interior of the constraint set C given by
(7) and x(t)→ 0 as t→∞, in spite of the uncertainties captured by G(η, ξ, u), δξ(η, ξ, u), and
δη(η, ξ). For the statement of this result, let

Cz , {z ∈ Rm : hz(z) ≥ 0} (25)

be simply connected, hz : Rm → R be continuously differentiable, hz(0) > 0, and C̊z ⊆ {z ∈
Rm : z = ξ − φ(η), (η, ξ) ∈ C̊η × C̊ξ}. Furthermore, let xi denote the ith component of x ∈ Rn,
let the invertible matrix function Ĝ : Rn−m × Rm → Rm×m denote an estimate of G(·), and
define

ψ(η, ξ, w) , −λ(η, ξ) + E−1(η, ξ)w, (t, η, ξ, w) ∈ [t0,∞)× C̊η × C̊ξ × Rm, (26)

λ(η, ξ) , E−1(η, ξ)Ĝ−1(η, ξ)

[
fξ(η, ξ)−

∂φ(η)

∂η
fη(η, ξ)

]
, (27)

∆(t, η, ξ, w) , δ(t, η, ξ, ψ(η, ξ, w)) +
[
I −G(η, ξ)Ĝ−1(η, ξ)

] [
fξ(η, ξ)−

∂φ(η)

∂η
fη(η, ξ)

]
,

(28)

δ(t, η, ξ, w) , δξ(t, η, ξ, w)− ∂φ(η)

∂η
δη(η, ξ), (29)

where φ(·) satisfies Lemma 5.1. Furthermore, let e : [t0,∞) → Bδe(0) be continuous and such
that

[(η(t) + eη(t))
T, (ξ(t) + eξ(t))

T]T , T (x(t) + e(t)), t ≥ t0, (30)
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and e(t)→ 0 as t→∞ uniformly in t0, where δe is sufficiently small, x(·) denotes the unique
solution of (16) with u = ψ(η + eη, ξ + eξ, γ(η + eη, ξ + eξ)), γ(·, ·) is such that

γi(η, ξ) = −sign(zi(η, ξ))sign

(
2

hz(z(η, ξ))
− zi(η, ξ)

h2z(z(η, ξ))

∂hz(z)

∂zi

)
βi(η, ξ),

(η, ξ) ∈ C̊η × C̊ξ, i = 1, . . . ,m, (31)

zi(·, ·) denotes the ith component of z(η, ξ) , ξ−φ(η), i = 1, . . . ,m, ki ∈ [0, 1), sign(·) denotes
the signum function, βi : Rn−m × Rm → R+ is continuous in its arguments and such that

βi(η, ξ) ≥ c+
ρi(η, ξ)

1− ki
, (32)

c > 0, ρi : C̊η × C̊ξ → R+ is continuous in its arguments, and∣∣[G−1(η, ξ)∆(t, η, ξ, ψ(η, ξ, w))
]
i

∣∣ ≤ ρi(η, ξ) + ki|wi|,
(t, η, ξ, w) ∈ [t0,∞)× C̊η × C̊ξ × Rm. (33)

Theorem 5.1. Consider the nonlinear dynamical system (16) and the constraint sets (7), (20),
and (25). Suppose Assumption 5.1 is verified, the conditions of Lemma 5.1 are satisfied, and
there exist ki ∈ [0, 1), i = 1, . . . ,m, and continuous functions ρi : C̊η × C̊ξ → R+, such that
(33) is verified. Then, there exist compact sets Mη ⊂ C̊η and Mz ⊂ C̊z, such that 0 ∈Mη and
0 ∈ Mz. Furthermore, if (η(t0), ξ(t0) − φ(η(t0)) ∈ Mη ×Mz, then the solution x(·) of (16),
with

u = ψ(η + eη, ξ + eξ, γ(η + eη, ξ + eξ)), (η, ξ, eη, eξ) ∈ C̊η × C̊ξ × Bδeη (0)× Bδeξ (0), (34)

where Bδeη (0) × Bδeξ (0) ⊆ T (Bδe(0)), is such that x(t) ∈ C̊, t ≥ t0, and x(t) → 0 as t → ∞
uniformly in t0.

Theorem 5.1, whose proof is reported in the Appendix, provides sufficient conditions to
guarantee that the trajectory x(t), t ≥ t0, of (16) with feedback control law (34) is contained in
the interior of the constraint set (7), and asymptotically convergences to the equilibrium point
x = 0. The classical sliding mode architecture guarantees asymptotic convergence for uncertain
nonlinear plants in the same form as (16), and accounts for uncertainties, such that∥∥G−1(η, ξ)∆(t, η, ξ, ψ(η, ξ, w))

∥∥
∞ ≤ ρ(η, ξ) + k‖w‖∞,

(t, η, ξ, w) ∈ [t0,∞)× Rn−m × Rm × Rm; (35)

note that (35) implies (33). The classical sliding mode control does not account for constraints
on the system’s trajectory, which is assumed to be perfectly known.

The control law (34) is a function of the design parameters c > 0 and ki ∈ [0, 1), i = 1, . . . ,m.
The parameter c is arbitrary and should be chosen as small as possible to minimize the amplitude
of chattering in proximity of the sliding manifold. The parameters ki, i = 1, . . . ,m, depend on
the modeling assumptions on the plant and should be chosen as small as possible to reduce
chattering. However, smaller values of c and ki imply slower convergence to the sliding manifold.

Remark 5.1. If

sign

(
2

hz(z(η, ξ))
− zi(η, ξ)

h2z(z(η, ξ))

∂hz(z)

∂zi

)
> 0, i = 1, . . . ,m, (36)
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for all (η, ξ) ∈ C̊η × C̊ξ, then (31) reduces to

γi(η, ξ) = −sign(zi(η, ξ))βi(η, ξ). (37)

This condition is verified, for instance, if hz(z) < e2ωz2i , for all z ∈ Rm and i = 1, . . . ,m, and

C̊z ⊂
{
z ∈ Rm : ‖z‖ ≤ e−ω

}
, (38)

where ω ∈ R.

In order to guarantee that the solution x(·) of (16) with observer-based feedback control (34)
is such that x(t) ∈ C̊, t ≥ t0, Theorem 5.1 requires the estimation error e(·) to be such that
e(t) ∈ Bδe(0), t ≥ t0, where δe > 0 is sufficiently small. Specifically, one needs to design a
robust nonlinear observer, such that (η(t) + eη(t)) ∈ C̊η, t ≥ t0, and (ξ(t) + eξ(t)) ∈ C̊ξ. This
observer design problem is addressed in the next section.

VI. The Walcott and Żak Observer

In this section, we show how a popular nonlinear robust observer, that is, the Walcott and
Żak observer [38]–[44], can be employed within the proposed observer-based feedback control
framework. Specifically, consider the uncertain nonlinear dynamical system

ẋ(t) = Ax(t) +B
[
u(t) + δ1(t, x(t), u(t))

]
, x(t0) = x0, t ≥ t0, (39)

y(t) = Cx(t), (40)

where x(t) ∈ Rn, t ≥ 0, u(t) ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, δ1 : [t0,∞) × Rn × Rm → Rm

is unknown, δ1(·, ·, ·) is jointly continuous in t, x, and u, δ1(t, ·, ·) is locally jointly Lipschitz
continuous in x and u uniformly in t, for all t in compact subsets of [t0,∞), and C ∈ Rl×n

has full row rank. The plant model (39) is sufficiently broad to model numerous problems of
practical interest, since several system identification techniques can be applied to compute linear
models that provide satisfactory first-order approximations of nonlinear dynamical systems [59],
[60]. To simplify the sensors’ calibration process, it is common practice to consider some linear
function of the measured state vector as the system output; the rank condition on the matrix C
implies that there is no redundancy amongst the measurements captured by the output y(·).

Consider the observer

˙̂x(t) = Ax̂(t) +B [u(t)− v(t)]−K [Cx̂(t)− y(t)] , x̂(t0) = x̂0, t ≥ t0, (41)

where the observer gain K ∈ Rn×l is such that Ae , A+KC is Hurwitz, P is the symmetric,
positive-definite solution of the Lyapunov equation

0 = AT
e P + PAe +Q, (42)

Q ∈ Rn×n is symmetric and positive-definite, and F ∈ Rm×l is such that

PB = CTFT. (43)

The next result provides a feedback control law for the virtual control v : [t0,∞)→ Rm so that
the state x̂(·) of (41) converges to the plant state x(t) of (39) exponentially in time. For the
statement of this result, let e(t) = x(t)− x̂(t), t ≥ t0, denote the estimation error, and note that
(39)–(41) imply that

ė(t) = Aee(t) +B [v(t) + δ1(t, x(t), u(t))] , e(t0) = x0 − x̂0, t ≥ t0, (44)
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where x(t) verifies (39).

Theorem 6.1 [38]. Consider the uncertain nonlinear dynamical system (39) and (40), the
observer (41), and the estimation error dynamics (44). If there exist a continuous function ρ :
[t0,∞)× Rn × Rl × Rm → R+ such that

‖δ1(t, x, u)‖ ≤ ρ(t, x̂, y, u), (t, x, x̂, y, u) ∈ [t0,∞)× Rn × Rn × Rl × Rm, (45)

then the solution e(t), t ≥ 0, of (44) with feedback control law

v = γ(t, x̂, y, u), (t, x̂, y, u) ∈ [t0,∞)× Rn × Rl × Rm, (46)

is such that e(t) ∈ Bδe(0), t ≥ t0, and e(t) → 0 as t → ∞ uniformly in t0 and exponentially
in time, where γi(t, x̂, y, u) = −sign(zi(x̂, y))β(t, x̂, y, u), zi(x̂, y) denotes the ith component of
z(x̂, y) , F [y − Cx̂], i = 1, . . . ,m, β(t, x̂, y, u) ≥ ce +ρ(t, x̂, y, u), ce > 0, and ‖x0− x̂0‖ < δe.

Remark 6.1. Theorem 6.1 guarantees that the norm of the estimation error is a decreasing
function of time and exponentially converges to zero [38]. Hence, if the estimation error e(t0) =
x0 − x̂0 is sufficiently small, that is, (η(t0) + eη(t0)) ∈ C̊η and (ξ(t0) + eξ(t0)) ∈ C̊ξ, where
C̊η × C̊ξ ⊆ T (Bδe(0)), then the Walcott and Żak observer given by (41) and (46) is suitable
estimator for the observer-based feedback control framework developed herein. Similarly, the
observers presented in [39]–[44], which are variations of the Walcott and Żak observer, can be
employed within the proposed framework.

Although the estimation error e(·) can be neither measured directly nor computed integrating
(44), Ce(t) = y(t) − Cx̂(t), t ≥ t0, is well-defined, since the measured output y(t) is known
and x̂(t) is computed integrating (41) with the same control input u(·) as in (39) and the virtual
control input v(·) given by (46). Thus, (41) with feedback control law (46) is well-defined.
The gain matrix K ∈ Rl×n in (41) plays an important role in the Walcott and Żak observer.
Specifically, since Ae = A+KC, it follows from (44) and (46) that K directly affects the rate
of exponential convergence of the estimation error along the sliding manifold. Moreover, the
matrices Q and K provide n(n+ 1)/2 +ml design variables so that P and F verify both (42)
and (43).

VII. Roll Stabilization of a Delta-Wing Aircraft

In this section, we apply the results developed in Sections V and VI and provide an observer-
based feedback robust nonlinear control that stabilizes the roll dynamics of a delta-wing aircraft;
this aircraft configuration is unstable [61, pp. 285]. Specifically, our controller guarantees that
the aircraft roll angle and roll rate are constrained to given intervals at all times and the system’s
state asymptotically converges to the equilibrium condition.

The roll dynamics of a delta-wing aircraft is captured by [61, pp. 285-290][
ẋ1(t)
ẋ2(t)

]
=

[
0 1
−θ1 −θ2

] [
x1(t)
x2(t)

]
+

[
0
θ6

] [
u(t) + δ̃1(x1, x2)

]
,

[
x1(0)
x2(0)

]
=

[
x10
x20

]
, t ≥ 0, (47)

y(t) = θ̂−16 x1(t) + θ̂−16 x2(t), (48)

where x1(t) and x2(t) ∈ R denote the aircraft roll angle and roll rate, respectively, u(t) ∈ R
denotes the voltage applied to the aileron motor to induce a deflection of the control surface [62,
Ex. 3.4], Φ ∈ R, δ̃1(x1, x2) = θ−16 [−θ3|x1|x2 + θ4|x2|x2 + θ5x

3
1], the parameters θi ∈

[
θi, θi

]
,

i = 1, . . . , 6, are unknown, θj, θj > 0, j = 1, 3, . . . 6, is known, θ2, θ2 > 1 is known, and
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Figure VII.1. Closed-loop aircraft roll dynamics and estimated roll dynamics versus time.

θ̂6 ∈
[
1
2
θ6, θ6

]
is known. Our goal is to apply Theorems 5.1 and 6.1 and design an observer-

based feedback control law, such that x(t) → 0 as t → ∞, where x = [x1, x2]
T, and x(t) ∈ C̊,

t ≥ 0, where
C = {(x1, x2) ∈ R× R : |x1| ≤ x1, |x2| ≤ x2}

and x1, x2 > 0.
Let θ̂i ∈

[
θi, θi

]
, i = 1, 2, 6, denote an estimate of θi. The nonlinear dynamical system (47)

and (48) is equivalent to[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−θ̂1 −θ̂2

] [
x1(t)
x2(t)

]
+

[
0

θ̂6

]
[u(t) + δ1(x1(t), x2(t), u(t))] ,

[x1(0), x2(0)]T = [x10, x20]
T , t ≥ 0, (49)

y(t) = θ̂−16 x1(t) + θ̂−16 x2(t), (50)

where

δ1(x1, x2, u) = θ̂−16

[
θ6δ̃1(x1, x2) + (θ̂1 − θ1)x1 + (θ̂2 − θ2)x2 + (θ6 − θ̂6)u

]
,

and (49) and (50) is in the same form as (16) with n = 2, m = 1, x = [x1, x2]
T, t0 = 0,

f(x) =

[
0 1

−θ̂1 −θ̂2

]
x, B(x) =

[
0, θ̂6

]T
, G(x) = E(x) = 1, and δ2(x) = 0. In this case,

Assumption 5.1 is verified by T (x) = θ̂−16 x, x ∈ R2, η = θ̂−16 x1, and ξ = θ̂−16 x2. Moreover,
fη(η, ξ) = ξ, fξ(η, ξ) = −θ̂1η − θ̂2ξ, δη(η, ξ) = 0, δξ(t, η, ξ, u) = δ1(θ̂6η, θ̂6ξ, u),

Cη =
{
η ∈ R : |η| ≤ θ̂−16 x1

}
, (51)
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Figure VII.2. Output-feedback control versus time.

Cξ =
{
ξ ∈ R : |ξ| ≤ θ̂−16 x2

}
, (52)

Cz =
{
z ∈ R : |z| ≤ θ̂−16 (x2 + qx1)

}
, (53)

hη(η) =
(
θ̂−16 x1

)2
− η2, hξ(ξ) =

(
θ̂−16 x2

)2
− ξ2, and hz(z) = θ̂−26 (x2 + qx1)

2 − z2.
Next, consider the continuously differentiable function

V (η) = η2, η ∈ C̊η, (54)

and the state-feedback control law φ(η) = −qη, where q ∈
(
0, x2x

−1
1

)
, and note that

V (η)

hη(η)
is

positive-definite for all η ∈ C̊η, (23) is verified with α(‖η‖) = β(‖η‖) =
V (η)∣∣∣(θ̂−16 x1)2 − η2

∣∣∣ , and

φ(C̊η) ⊂ C̊ξ. Furthermore, it holds that[
1

hη(η)

∂V (η)

∂η
− V (η)

h2η(η)

∂hη(η)

∂η

]
[fη(η, φ(η)) + δη(η, φ(η))] = −2q

hη(η) + η2

h2η(η)
η2

= −2q

(
θ̂−16 x1

)2
η2(

θ̂−16 x1

)2
− η2

, η ∈ C̊η,

(55)

which implies that (24) is verified. Hence, the conditions of Lemma 5.1 are satisfied and the
closed-loop system

η̇(t) = −qη(t), η(0) = θ̂−16 x10, t ≥ 0, (56)
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is asymptotically stable and η(t) ∈ C̊η, t ≥ 0. Finally, in this case it holds that[

G−1(η, ξ)∆(t, η, ξ, ψ(η, ξ, w))
]

= δξ(t, η, ξ, ψ(η, ξ, w)), [t0,∞)× C̊η × C̊ξ × Rm,

where

ψ(η, ξ, w) = θ̂1η +
(
θ̂2 − qθ̂1

)
ξ + w, (57)

and (33) is satisfied with

ρ1(η, ξ) = θ3θ̂6|η||ξ|+ θ4θ̂6ξ
2 + θ5θ̂

2
6|η|3 +

(
θ̂1 − θ1

)
|η|+

(
θ̂2 − θ2

)
|ξ|

+ θ̂−16

(
θ6 − θ̂6

) [
θ̂1|η|+

(
θ̂2 − qθ̂1

)
|ξ|
]
, (η, ξ) ∈ C̊η × C̊ξ, (58)

k1 = θ̂−16

(
θ6 − θ̂6

)
. (59)

In this case, the conditions of Theorem 5.1 are verified and it follows from Remark 5.1 and (31)
that

γ1(η, ξ) = −sign(ξ + qη)β1(η, ξ), (η, ξ) ∈ C̊η × C̊ξ, (60)

where β1(η, ξ) ≥ c+ (1− k1)−1ρ1(η, ξ) and c > 0.
Let Mη be a compact set, such that 0 ∈ Mη ⊂ (−θ̂−16 x1, θ̂

−1
6 x1) = C̊η and let Mz be

a compact set, such that 0 ∈ Mz ⊂
(
−θ̂−16 x2 − qθ̂−16 x1, θ̂

−1
6 x2 + qθ̂−16 x1

)
= C̊z. It follows

from Theorem 5.1 that if
(
θ̂−16 x10, θ̂

−1
6 (x20 + qx10)

)
∈ Mη × Mz and the estimated state

(η(t) + eη(t), ξ(t) + eξ(t)) ∈ C̊η × C̊ξ, t ≥ 0, then the solution x(t) = [x1(t), x2(t)]
T, t ≥ 0, of

(47) with feedback control (34) is such that x(t) ∈ C̊, t ≥ 0, and x(t)→ 0 as t→∞.
Next, we apply the Walcott and Żak observer outlined in Theorem 6.1 to estimate the trajectory

of (49). Note that (49) and (50) is in the same form as (39) and (40) with A =

[
0 1

−θ̂1 −θ̂2

]
,

B =
[
0, θ̂6

]T
, C = θ̂−16 [1, 1], and δ1(t, x, u) = δ1(x, u), (t, x, u) ∈ [0,∞)×R2×R, and consider

the observer (41), where x(t) satisfies (49). Defining the estimation error as e(t) = x(t)− x̂(t),
t ≥ 0, it follows from (49), (41), and (57) that

ė(t) = Aee(t) +B
[
v(t) + δ1(θ̂6η(t), θ̂6ξ(t), ψ(η(t), ξ(t), γ1(η(t), ξ(t))))

]
,

e(0) = x0 − x̂0, t ≥ 0, (61)

where Ae = A+KC.
In this case, it holds that

|δ1(θ̂6e1, θ̂6e2, ψ(e1, e2, γ1(e1, e2)))| ≤ ρ2(e1, e2), (e1, e2) ∈ R× R, (62)

where e = θ̂6[e1, e2]
T and ρ2(e1, e2) , ρ1(e1, e2)+k1|ψ(e1, e2, γ1(e1, e2))|, and ρ2(e1, e2) ≤ ρ(α),

(e1, e2, α) ∈ R× R× R, where

ρ(α) , max
α∈{e1,e2}

ρ2(α, α).

Since both e1(·) and e2(·) are continuous in their arguments, it follows from (57), (58), and (60)
that both α(t) = θ̂−16 ‖x(t)− x̂(t)‖∞, t ≥ 0, and ρ(α(t)) are continuous, where ‖ · ‖∞ denotes
the infinity norm of its argument. Now, if there exist K ∈ R2, F ∈ R, and a symmetric positive-
definite matrix Q ∈ R2×2 such that (42) and (43) are verified, then it follows from Theorem 6.1
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that the estimation error dynamics (61) with feedback control law (46) is such that ‖x(·)− x̂(·)‖
is a monotonically decreasing function and converges to zero exponentially fast. In this problem,
the feedback control law v = γ(x̂, y) can be computed as follows. It follows from (58) that ρ(·)
is a monotonically increasing function and note that

θ̂−16 max {|x1 − x̂1| , |x2 − x̂2|} ≤ θ̂−16 |x1 − x̂1 + x2 − x̂2|+ θ̂−16 min {|x1 − x̂1| , |x2 − x̂2|}
= |y − Cx̂|+ θ̂−16 min {|x1 − x̂1| , |x2 − x̂2|} .

Thus, it follows from [6, p. 188] that

ρ (α(t)) ≤ ρ (2 |y(t)− Cx̂(t)|) + ρ
(

2θ̂−16 min {|x1(0)− x̂1(0)| , |x2(0)− x̂2(0)|}
)
, (63)

for all t ≥ 0, and (61) specializes to

γ(x̂, y) = −sign (y − Cx̂) [ρ (2 |y − Cx̂|) + ce] , (x̂, y) ∈ R2 × R, (64)

where ce ≥ ρ
(

2θ̂−16 min {|x1(0)− x̂1(0)| , |x2(0)− x̂2(0)|}
)

; although x(0) may not be precisely
known, it is reasonable to assume that an estimate of x(0) is available. Alternative approaches
to estimate both the aircraft roll angle and the roll rate consist in applying Kalman filters [49,
Ch. 8] or extended Kalman filters [49, Ch. 13] to data measured by the gyroscopes installed on
the vehicle [63].

Let θ1 = 0.018, θ2 = 1.113, θ3 = 0.062, θ4 = 0.009, θ5 = 0.0021, θ6 = 0.790, θi =
0.1, i = 1, 3, 4, 5, θ2 = 2.1, θ6 = 1, θj = 10−3, j = 1, 3, . . . , 6, θ2 = 1.001, θ̂p = 0.03,
p = 1, 3, 4, 5, θ̂2 = 1.05, θ̂6 = 0.9, x1 = 2π/9, x2 = 1 Hz, q = 1

2
x2x

−1
1 , K = 0, F = 1,

P =

[
2F
(
θ̂1 + θ̂2

)
F

F F

]
, Q =

[
2F θ̂1 0

0 2F
(
θ̂2 − 1

)], and c = 1. Figure VII.1 shows the

trajectory of the closed-loop system using the observer-based feedback control law u = ψ(η +
eη, ξ+ eξ, γ1(η+ eη, ξ+ eξ)), which is shown in Figure VII.2; clearly, x(t) ∈ C̊, t ≥ 0, x(t)→ 0
as t→∞, and ‖x(0)− x̂(0)‖ ≥ ‖x(t)− x̂(t)‖, t ≥ t0, and ‖x(t)− x̂(t)‖ → 0 as t→∞, that
is, the closed-loop system converges to x ≡ 0 and the estimated state converges to the system’s
state. Figure VII.2 clearly shows that the control input is affected by chattering for all t ≥ 3.

VIII. Conclusion

This paper presents an observer-based feedback sliding mode architecture for time-varying
nonlinear dynamical systems in the presence of uncertainties in the plant model and constraints
on the system’s trajectory. The proposed control law guarantees finite-time convergence of the
closed-loop trajectory to the sliding manifold, while the state constraints are verified by barrier
Lyapunov functions. Moreover, it is shown how the proposed framework can be integrated with
existing nonlinear estimators, such as the Walcott and Żak observer. Our theoretical results are
illustrated by a numerical example involving the roll dynamics of an unstable aircraft.

The numerical example clearly shows that the proposed control algorithm is affected by
chattering. Future work directions involve the development of a chattering-free observer-based
feedback control algorithm, based on the framework presented in this paper. To this goal,
one possibility involves the introduction of a boundary layer, where the signum function is
approximated by the saturation, the sigmoid, or the arctangent functions [64], [65]. Alternatively,
higher-order sliding mode methods [66] and observer-based sliding mode controllers [67] will
be considered to mitigate chattering.
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In this section, we present the proofs of the main theoretical results developed in this paper.

Proof of Theorem 3.1

Firstly, we use a contradiction argument to prove that if x0 ∈ C̊, then x(t) ∈ C̊ for all t ≥ t0.
Specifically, suppose ad absurdum there exists T ∗ ∈ (t0,∞)∩It0,x0 , such that limt→T ∗ h(x(t)) =
0 along the trajectory of (1), where It0,x0 denotes the maximal interval of existence of the solution
x(·) of (1). It follows from the continuity of h(·) on D and x(·) on It0,x0 that limt→T ∗ h(x(t)) =
h (limt→T ∗ x(t)) = h (x(T ∗)) = 0, which implies that x(T ∗) 6= 0, since 0 ∈ C̊ and h(x) > 0,
x ∈ C̊. Moreover, it follows from (8) that V (t, x) = 0 if and only if x = 0 and hence it
follows from the continuity of V (·, x(·)) that limt→T ∗ V (t, x(t)) = V (T ∗, x(T ∗)) 6= 0. Therefore,

limt→T ∗
V (t, x(t))

h(x(t))
=∞. Now, since

d

dt

V (t, x(t))

h(x(t))
=

1

h(x(t))

∂V (t, x(t))

∂t
+

[
1

h(x(t))

∂V (t, x(t))

∂x

− V (t, x(t))

h2(x(t))

∂h(x(t))

∂x

]
f(t, x(t)), t ≥ t0, (65)

along the trajectory of (1), it follows from (9) that
V (t, x(t))

h(x(t))
, t ≥ t0, is a decreasing function

of time, that is, if x0 ∈ C̊ and x0 6= 0, then

V (t, x(t))

h(x(t))
<
V (t0, x0)

h(x0)
≤ β(‖x0‖) <∞, t > t0. (66)

However, the fact that limt→T ∗
V (t, x(t))

h(x(t))
=∞ contradicts (66). Hence, if x0 ∈ C̊, then x(t) ∈ C̊

for all t ≥ t0, that is, C̊ is positively invariant with respect to (1).
Next, we prove uniform Lyapunov stability of (1). Let ε > 0, consider the open set Bε(0)∩ C̊

containing x = 0, and let δ = δ(ε) > 0 be such that β(δ) = α(ε). It follows from (8) that, for
all (t0, x0) ∈ [0,∞)× Bδ(0) ∩ C̊,

α(‖x(t)‖) ≤ V (t, x(t))

h(x(t))
≤ V (t0, x0)

h(x0)
< β(δ) = α(ε), t ≥ t0. (67)

Thus, x(t) ∈ Bε(0) ∩ C̊, t ≥ t0, since C̊ is positively invariant with respect to (1) for every
x0 ∈ Bδ(0) ∩ C̊, and uniform Lyapunov stability of (1) is proven.

Next, note that the solution to

v̇(t) = −kvθ(t), v(t0) = v0 =
V (t0, x0)

h(x0)
, t ≥ t0, (68)

with (t0, x0) ∈ [0,∞)× C̊, is given by

v(t) =


[
v1−θ0 − k(1− θ)t

] 1
1−θ , t0 ≤ t < t1, v0 6= 0,

0, t ≥ t1, v0 6= 0,

0, t ≥ t0, v0 = 0,

(69)
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where

t1 =
1

k(1− θ)

[
V (t0, x0)

h(x0)

]1−θ
. (70)

Now, let w : [0,∞)→ R be a continuously differentiable function such that

ẇ(t) ≤ −kvθ(t), w(t0) =
V (t0, x0)

h(x0)
, t ≥ t0, (71)

where v(t) is given by (69). Then, it follows from (68), (71), and the comparison lemma [8, p.
126] that

w(t) ≤ v(t), t ≥ 0. (72)

Thus, it follows from (9), (68), (69), (71), and (72), with w(t) =
[
V (t,x(t)
h(x(t))

]1−θ
, t ≥ t0, that

α(‖x(t)‖) ≤ V (t, x(t))

h(x(t))
≤ v(t), t ≥ t0, (73)

and hence, using (8), (69), and (73),

x(t) = 0, t ≥ t1, (74)

where t1 is given in (70).
Next, we prove that there exist a neighborhood D0 ⊆ C̊ of the origin and a settling-time

function T : [0,∞) × D0 → (t0,∞) such that (10) is satisfied. Since s(t0, t0, x0) = x0 and
s(·, ·, ·) is continuous, inf{t ∈ (t0,∞) : s(t, t0, x0) = 0} > t0, x0 ∈ Bδ(0)∩C̊ \{0}. Furthermore,
it follows from (74) that inf{t ∈ (t0,∞) : s(t, t0, x) = 0} < ∞, x0 ∈ Bδ(0) ∩ C̊ \ {0}. Now,
defining D0 , Bδ(0) ∩ C̊ and T : [0,∞)×D0 → (t0,∞) by (69) and (70), (10) is immediate.

Next, we prove strong uniform finite-time stability of (1). For t ≥ T (t0, x0), uniform finite-time
convergence of x(t) to zero is immediate for all (t0, x0) ∈ [0,∞)×D0. Alternatively, for every
t < T (t0, x0) and ε > 0, there exists δ = α−1

(
ε1−θ

k(1−θ)

)
such that if ‖x(t)‖ ≤ α−1(v(t)) < ε, then

T (t0, x0)− t ≤ t1 − t < δ, which proves uniform finite-time convergence of (1). Consequently,
the time-varying nonlinear dynamical system (1) is strongly uniformly finite-time stable.

Lastly, it follows from the finite-time stability of (1) and Proposition 3.4 of [50] that T (·, ·) can
be extended to R+ and T (t0, 0) = 0. Moreover, the right-hand side of (10) is jointly continuous at
(t0, 0), t0 ∈ [0,∞), and hence, by Proposition 3.4 of [50], it is jointly continuous on [0,∞)×D0.

�

Proof of Theorem 4.1

It follows from (13) that x = 0 is a local minimizer of V (t, x), (t, x) ∈ [t0,∞)×D, and hence[
∂V (t,x)
∂t

, ∂V (t,x)
∂x

]T
= 0, for all t ∈ [t0,∞) and x = 0, since V (·, ·) is continuously differentiable

on [t0,∞)×D. Furthermore, it follows from (14) and the continuity of
∥∥∥∂V (t,x)

∂x

∥∥∥ on [t0,∞)×D
that for every ε > 0, k > 0, and θ ∈ (0, 1) there exist a compact set M⊂ D and a continuous
function g :M→ [0, k), such that 0 ∈M and

ε

∥∥∥∥∂V (t, x)

∂x

∥∥∥∥ ≤ g(x)(V (t, x))θ, (t, x) ∈ [t0,∞)×M. (75)



18
Next, it follows from (14) that the total derivative of V (·, ·) along the trajectory of (6) is given

by

∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(x+ e)) =

∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(x))

+
∂V (t, x)

∂x
[F (t, x, φ(x+ e))− F (t, x, φ(x))]

≤ −k (V (t, x))θ +
∂V (t, x)

∂x
[F (t, x, φ(x+ e))

−F (t, x, φ(x))] , (76)

for all (t, x, e) ∈ [t0,∞)×D×Rn. Since F (t, ·, ·) is jointly continuous in x and u uniformly in t,
for all t ∈ [t0,∞), and ‖φ(·)‖ is continuous on D, for every ε > 0 there exists δ = δ(ε) > 0 such
that if ‖e‖ < δ, then ‖F (t, x, φ(x+e))−F (t, x, φ(x))‖ < ε, for all (t, x, e) ∈ [t0,∞)×M×Bδ(0).
Therefore,

∂V (x)

∂x
F (t, x, φ(x+ e)) ≤ −k (V (x))θ + ε

∥∥∥∥∂V (t, x)

∂x

∥∥∥∥ , (t, x, e) ∈ [t0,∞)×M×Bδ(0),

(77)

and it follows from the continuity of g(·) on M, (75), and Theorem 2.13 of [8] that

∂V (t, x)

∂t
+
∂V (t, x)

∂x
F (t, x, φ(x+ e)) ≤ (g − k) (V (t, x))θ , (t, x, e) ∈ [t0,∞)×M×Bδ(0),

(78)

where g , maxx∈M g(x) and g < k.
Since e(t) → 0 as t → ∞ uniformly in t0, for every ε > 0 there exists T (ε) > t0, such that
‖e(t)‖ < δ(ε) for all t > T (ε). Therefore, for every initial condition x0 ∈M, it holds that

∂V (t, x(t))

∂t
+
∂V (t, x(t))

∂x
F (t, x(t), φ(x(t) + e(t))) ≤ (g − k) (V (t, x(t)))θ , t > T (ε), (79)

along the trajectory of (6). Uniform finite-time convergence of x(·) to zero now follows from
(13) and (79) by proceeding as in the proof of Theorem 3.1. �

Proof of Theorem 5.1

It follows from Assumption 5.1 that there exists a diffeomorphism T (x) = [ηT, ξT]T such that
T (0) = 0, (17) is satisfied, and (16) is equivalent to (18) and (19). The nonlinear dynamical
system (18) with ξ = φ(η) is equivalent to (22) and it follows from Lemma 5.1 that the
equilibrium point η(t) ≡ 0, t ≥ t0, of (22) is asymptotically stable and η(t) ∈ C̊η, t ≥ t0.

Consider the nonlinear dynamical system

η̇(t) = fη(η(t), φ(η(t) + eη(t))) + δη(η(t), φ(η(t) + eη(t))),

η(t0) = [In−m, 0(n−m)×m]T (x0), t ≥ t0, (80)

and recall that by assumption, eη(t) ∈ Bδeη (0), t ≥ t0, and limt→∞ eη(t) = 0 uniformly in t0.
Thus, it follows from (23), (24), and Theorem 4.2 that there exists a compact set Mη ⊂ C̊η,
such that 0 ∈ Mη and if η(t0) ∈ Mη, then η(t) → 0 as t → ∞ uniformly in t0. Furthermore,
proceeding as in the proofs of Theorems 4.1 and 3.1, one can show that η(t) ∈ Mη ⊂ C̊η,
t ≥ t0. Thus, the observer-based feedback control ξ = φ(η + eη) guarantees that the solution of
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the dynamical system (18) asymptotically converges to η(t) ≡ 0 and lays in the constraint set
C̊η at all times.

Let [ηT(t), ξT(t)]T, t ≥ t0, denote the solution of (18) and (19) with observer-based feedback
control law (34). Next, we prove that (η(t), ξ(t)) ∈ C̊η × C̊ξ, t ≥ t0, ‖ξ(t) − φ(η(t))‖ → 0
as t → t1, for some finite-time t1 ≥ t0, and ‖ξ(t) − φ(η(t))‖ is sufficiently small, that is,
‖ξ(t) − φ(η(t))‖ < ‖φ(η(t) + eη(t)) − φ(η(t))‖. Specifically, since ‖φ(·)‖ is continuous on C̊η
and eη(t) ∈ Bδeη (0), t ≥ t0, in the following we prove that the solution [ηT(t), ξT(t)]T, t ≥ t0,
of (18) and (19) is such that z(t) = (ξ(t) − φ(η(t))) ∈ Nz, t ≥ t0, where Nz ⊆ C̊z is an open
connected set such that 0 ∈ Nz, and z(t)→ 0 as t→ t1 uniformly in t0.

It follows from (18) and (19) that

ż(t) = fξ(η(t), ξ(t))− ∂φ(η(t))

∂η
fη(η(t), ξ(t)) +G(η(t), ξ(t))E(η(t), ξ(t))u(t)

+ δ(t, η(t), ξ(t), u(t)), z(t0) = ξ(t0)− φ(η(t0)), t ≥ t0, (81)

and (81) with u = ψ(η + eη, ξ + eξ, w), where ψ(·, ·, ·) is given by (26), is equivalent to

ż(t) = G(η(t), ξ(t))w(t) + ∆(t, η(t), ξ(t), w(t)) + Γ(t, η(t), ξ(t), w(t), eη(t), eξ(t))

− Γ(t, η(t), ξ(t), w(t), 0, 0), z(t0) = ξ(t0)− φ(η(t0)), t ≥ t0, (82)

where ∆(·, ·, ·, ·) is given by (28) and

Γ(t, η, ξ, w, eη, eξ) , δ(t, η, ξ, ψ(η + eη, ξ + eξ, w))−G(η, ξ)E(η, ξ)λ(η + eη, ξ + eξ)

+G(η, ξ)E(η, ξ)E−1(η + eη, ξ + eξ)w,

(t, η, ξ, w, eη, eξ) ∈ [t0,∞)× Rn−m × Rm × Rm × Bδeη (0)× Bδeξ (0).

(83)

Now, consider the nonlinear dynamical system (82) with w = γ(η, ξ) and eη = eξ = 0, let

V (z) =
‖z‖2

hz(z)
, z ∈ Nz, (84)

and define

δz , min
i=1,...,m

min
z∈M̂z

(1− ki)

∣∣∣∣∣ 2√
hz(z)

− zi√
h3z(z)

∂hz(z)

∂zi

∣∣∣∣∣ , (85)

where M̂z ⊂ Nz is a compact set, whose smallest open cover is Nz [55, pp. 618-619]; the

existence of δz > 0 is guaranteed by Theorem 2.13 of [8], since

∣∣∣∣∣ 2√
hz(z)

− zi√
h3z(z)

∂hz(z)

∂zi

∣∣∣∣∣ is

continuous on M̂z.
Since

∑m
i=1 z

2θ
i ≥ (

∑m
i=1 z

2
i )
θ, θ ∈ (0, 1), it follows from (84), (82), (33), and (31) that

V̇ (z) =
m∑
i=1

[
2

hz(z)
− zi
h2z(z)

∂hz(z)

∂zi

]
zi [gi(η, ξ)γi(η, ξ) + ∆i(t, η, ξ, γ(η, ξ))]

≤
m∑
i=1

gi(η, ξ)

[(
2

hz(z)
− zi
h2z(z)

∂hz(z)

∂zi

)
ziγi(η, ξ)

+

∣∣∣∣ 2

hz(z)
− zi
h2z(z)

∂hz(z)

∂zi

∣∣∣∣ |zi| (ρi(η, ξ) + ki|γi(η, ξ)|)
]
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≤
m∑
i=1

∣∣∣∣ 2

hz(z)
− zi
h2z(z)

∂hz(z)

∂zi

∣∣∣∣ gi(η, ξ)|zi| [ρi(η, ξ) + (ki − 1) βi(η, ξ)]

≤ −cg0δz
√
V (z), (86)

where gi(·, ·) denotes the element on the ith row and ith column of G(·, ·) and g0 is such that
G(η, ξ) ≥ g0Im > 0, (η, ξ) ∈ Rn−m × Rm. Hence, (13) is satisfied with α(‖z‖) = β(‖z‖) =
‖z‖2|hz(z)|−1 and (14) is satisfied with k = cg0δz and θ = 1

2
. Since eη(t) → 0 and eξ(t) → 0

as t → ∞, and V (·) is a class K function, it follows from (84), (86), and Theorem 4.1 that
there exists a compact set Mz ⊆ M̂z ⊂ Nz ⊆ C̊z, such that 0 ∈ Mz and if z(t0) ∈ Mz, then
the solution z(·) of (82) is such that z(t) → 0 as t → t1 uniformly in t0, for some finite-time
t1 > t0. Furthermore, proceeding as in the proofs of Theorems 4.1 and 3.1, one can prove that
z(t) ∈Mz ⊂ Nz, t ≥ t0. The result now follows recalling that the nonlinear dynamical system
(16) is equivalent to (18) and (19) or, alternatively, (18) and (81), and if (η(t), z(t)) ∈ C̊η × C̊z,
then (η(t), ξ(t)) ∈ C̊η × C̊ξ and hence, x(t) ∈ C̊. �
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